Final Project: Facial Detection in CUDA rmanathk, gsawhney

1 Summary

We implemented an optimized facial detection system using CUDA. Given the speed of our
implementation, we demonstrate that a parallel approach to classifying and detecting faces
is far more efficient than sequential CPU approaches.

2 Background

2.1 Key Operations and Data Structures

The Viola-Jones algorithm is a pivotal algorithm for face detection in images. Its efficiency
lies in the utilization of integral images, which are key data structures in the algorithm. The
integral image, also known as the summed area table, is an array of integers that represent
the sum of pixel intensities in a rectangular region of the original image. This structure
facilitates rapid computation of features within candidate windows.

Another key data structure is the cascade classifier. The cascade classifier is a series of
stages, each consisting of multiple strong and weak classifiers. It’s a data structure that
efficiently filters out non-face regions in the image. Each stage of the cascade contains a set
of thresholds and decision rules based on the Haar-like features.

Key operations on these data structures include the creation of the integral image and
the detection of features within image windows. The integral image is efficiently computed
using a single-pass algorithm, while feature detection involves evaluating rectangular regions
within the integral image to identify features indicative of facial characteristics.

The cascade classifier applies a series of weak classifiers in sequence. At each stage of the cas-
cade classifier, the algorithm evaluates multiple Haar-like features at various positions and
scales within the integral image. This operation involves calculating the difference between
the sums of pixel values in the light and dark regions defined by the Haar-like features. The
classifier uses decision rules to compare the computed feature values to predefined thresholds
and classify image regions as either faces or non-faces.

2.2 Algorithm Outline

The algorithm takes an input image containing one or more faces that need to be detected.
The output of the Viola-Jones algorithm is the location and size of bounding boxes around
detected faces within the input image. Each bounding box indicates the region where a face
is detected.

An outline of the algorithm is below:

— Use Haar-like features to identify different parts of the face, such as edges, lines, and
rectangles of varying sizes and positions.

— Calculates the integral image from the input image and uses a cascade classifier com-
posed of multiple stages (each stage consists of a set of weak classifiers)

— Invokes the cascade classifier to quickly reject non-face regions in the image. It does
this by applying a series of these weak classifiers in sequence. If a region fails any of
the weak classifiers in a stage, it is quickly discarded as not being a face.

— After passing through all stages of the cascade, the remaining regions are considered
potential faces. A final threshold is applied to these potential face regions to determine
if they are indeed faces.

2.3 Analyzing costs

One of the most computationally demanding aspects of the Viola-Jones algorithm occurs
during the feature detection step, where the algorithm evaluates numerous Haar-like features
across various positions and scales within the input image. Each feature evaluation involves
calculating the difference in the sums of intensities within specified rectangular regions of
the image, which would typically require a considerable number of memory accesses and
arithmetic operations.

The integral image provides a precomputed representation of the image, enabling faster
summation. However, even with the integral image, the large volume of feature evaluations
across different positions and scales can lead to significant computational overhead.



Final Project: Facial Detection in CUDA rmanathk, gsawhney

By exploiting parallel computing architectures such as multi-core GPUs, the algorithm
can distribute the workload across multiple processing units. Each processing unit can
independently evaluate Haar-like features within a designated region or subset of the image,
simultaneously executing computations on different parts of the input data. This would
likely result in efficient utilization of computational resources and reductions in processing
time.

The input image can be partitioned into smaller regions or tiles (blocks), with each region
assigned to a separate processing unit. By parallelizing the cascade classifier using CUDA,
we can take advantage of the parallel processing capabilities of GPUs, leading to significant
improvements in detection speed and efficiency.

2.4 Breaking down the workload

The integral image needs to be computed before feature detection can occur, establishing
a dependency between these steps. However, once the integral image is generated, feature
detection can be parallelized across different regions of the image. This parallelism arises
from the fact that each region can be processed independently, making the algorithm data-
parallel in nature. Additionally, the integral image enhances locality by reducing the number
of memory accesses needed for feature detection, thereby improving efficiency.

Input Cascade

Input Image Data
Classfier Examples e g

Detect Faces using
Cascade Classifier

Find window
size

do while(window_size < image_size) Compute
(scale image size up each time) integral image
Draw Rectangles Output image with
around Faces detected faces

Invoke Classifier

Accumulate
candidates into
results

Upon closer examination of the Viola-Jones algorithm, it became evident that certain as-
pects of the algorithm lend themselves well to parallel processing techniques. Specifically,
the evaluation of different images, such as integral images and sub-windows, presents op-
portunities for parallelization through block-like processing using CUDA. While the initial
implementation of the algorithm was sequential due to dependencies among classifier out-
puts for each window size, we are exploring strategies to efficiently accumulate this data.

3 Approach

Our parallelization efforts will focus on two main areas: firstly, evaluating each window for
a single integral image can be parallelized by partitioning the image into disjoint blocks,
which can be processed concurrently using CUDA blocks. Secondly, parallelizing the weak
classification steps of the cascade classifier, which will speed up the evaluation of facial
features throughout the image by encouraging early rejection of non-candidate areas.

3.1 Technologies used

For our project, we initially implemented a sequential facial detection system using C++-.
We then used CUDA to facilitate parallel processing directly on the GPU. Our code defines
number of blocks and threads per block based on the image frame.

We used The CUDA runtime APT is used to manage device (GPU) memory, control execu-
tion, and facilitate interactions between host (CPU) and device (GPU) code. We organized
our project into multiple files, each handling specific aspects of the algorithm including the
cascade classifier, generation of the integral images, and haar-feature calculations. This
modular approach helped us manage complexity and improve the maintainability of our



1

Final Project: Facial Detection in CUDA rmanathk, gsawhney

code. It also enabled us to parallelize and debug different portions of the algorithm individ-
ually.

We conducted all of our performance tests on the PSC machines since our project required
both an NVIDIA GPU as well as access to the Open-CV library.

3.2 Mapping the problem

In terms of mapping our sequential code to utilize CUDA parallelization on GPUs, we aimed
to isolate specific parts of the algorithm to do in parallel.

Our final parallelized CUDA algorithm is shown in the flowchart below. Note the GPU-
optimized processes are shown in blue:

Input Cascade

! Input Image Data
Classfier Examples PLtinagd

Detect Faces using Cascade
Classifier

For all rectangle resolutions

For each rectangle

Compute
integral sum/
squared sum

getRectangleSum Kernel

Accumulate
candidates into
results

Draw Rectangles Outputimage with
around Faces detected faces

For all strong classifiers

Invoke each

weak classifer
classify Kernel

Compare against
threshold

3.2.1 Cascade Classifier

One of the main challenges of our parallelization was the cascade classifier. Inherently, the
cascade classifier is a sequential process. The cascade is structured as a series of stages where
each stage contains one or multiple weak classifiers. The weak classifiers in each stage are
usually designed to identify simple features of the target object (e.g. edges, lines, or specific
texture patterns). Each stage of the classifier makes a binary decision about whether the
region of the image under consideration likely contains the object of interest. If a stage
classifies the region as negative (i.e., the object is not present), the processing of that region
stops, and it is rejected as a potential match. If the stage classifies the region as positive,
the region is passed on to the next stage in the cascade. The key challenge here was to
parallelize this process without doing too much extra computation due to the dependencies
in decisions throughout classification.

While the cascade itself executes sequentially since each stage must be passed before proceed-
ing to the next, we parallelized the evaluation within each stage. We found this to be the
best tradeoff between parallelization speedup and minimizing computational redundancy.
We wrote a CUDA kernel function for the evaluation of weak classifiers shown below.

The kernel evaluates a set of weak classifiers against a sub-region of an image to determine if
the region meets certain criteria defined by the classifiers. The function computes a unique
index for each thread across all blocks.

int idx = blockIdx.x * blockDim.x + threadldx.x;

This index is used to assign a specific weak classifier to each thread, ensuring that each
classifier is evaluated independently of others. The kernel checks if the thread’s index is less
than the total number of classifiers. If true, the thread proceeds to evaluate its assigned
classifier.

integral.computeFeatureDevice (classifiers[idx].haarlike, d_data
, SX, Sy);



Final Project: Facial Detection in CUDA rmanathk, gsawhney

Depending on the type of the Haar-like feature, an adjustment is made to the feature value
by adding a normalized product of dimensions and the mean pixel value of the region.

if (classifiers[idx].haarlike.type == 2) {
f += (classifiers[idx].haarlike.w * 3 * classifiers[idx
].haarlike.h * mean) / 3;
} else if (classifiers[idx].haarlike.type == 4) {
f += (classifiers[idx].haarlike.w * classifiers[idx].
haarlike.h * 3 * mean) / 3;
}

This normalization helps in adjusting the feature value relative to the average intensity of
the region. Finally, the kernel stores the boolean result of the classifier evaluation into the
results array, based on whether the computed score meets the specified threshold.

results [idx] = classifiers[idx].classify(f) * weights[idx];

By evaluating classifiers in parallel, the kernel minimizes latency and maximizes throughput.
This approach scales well with the increase in GPU cores, as more classifiers can be evaluated
simultaneously.

3.2.2 Detect Function

For the detect function, we implemented a combination of both host and device functions
that we found to work the most effectively. The getRectangleSumKernel is designed
to compute the sum of pixel values within a specified rectangle (sub-window) of the integral
image.

The detect function uses the cascade classifier to detect objects within the image. In the
sequential version of the code, the algorithm implemented a sliding window approach. The
approach involves moving a window of a fixed size across the image and analyzing the content
within that window at each position to determine if it contains the object of interest (a facial
feature in our case). This aspect seemed like an interesting area to parallelize since we would
have to navigate the dependencies in the image as well as keep computation costs low.

Instead of moving the window step by step in a single sequence, the CUDA kernel is de-
signed to process multiple windows simultaneously. Each thread in the GPU can handle the
classification of a different window beginning at its corresponding pixel. This allows for the
system to analyze all windows of a single size at once, eliminating the need for consider-
ing window dependencies. For each rectangle, the kernel computes the sum of pixel values
within the window based on the integral image.

We do this for several rectangle sizes, adjusting the baseResolution of the cascade
classifier by scaling it up for the next iteration to detect larger objects. This scaling factor
is passed in as a parameter and is crucial for a multi-scale detection approach where objects
of varying sizes are detected by progressively increasing the window size. The loop continues
until the baseResolution is larger than the image dimensions, ensuring that all possible
object sizes are checked.

After all windows of a single size have been evaluated, we synchronize the CUDA threads and
invoke the cascade classifier before continuing on to the next size. This is when candidate
boxes that pass the calculated threshold are marked as features.

3.3 Starter code

To help implement our sequential C++ facial detection system, we used the following github
repository:

https://github.com/noahlevenson/wasmface

This github consists of a sequential implementation of the Viola-Jones algorithm with CPU
optimizations (no GPU optimizations), and is written entirely in C++ and Javascript. We
used their C++ implementation as a baseline for our approach but had to make many
adjustments as the code was designed to take in HTML5 ImageData and was run using
WebAssembly.

We also utilized human-face.js (which we converted to a JSON file) which was included in
the github. This is a cascade classifier model trained to detect faces. The model has been
trained on around 13,000 positive examples and 10,000 negative examples generated from
stock photos.



Final Project: Facial Detection in CUDA rmanathk, gsawhney

4 Results

4.1 Experimental Setup

For our performance tests, we gathered images of varying amount of faces to judge the
performance of our algorithm with an increasingly large input size. This is because the
classifiers often return early once it is realized that a face is not detected, so the presence
of more faces would require much more computation.

Our parameters for performance tests are as follows:
1. Delta (detector sweep delta to apply): 1.0
2. Overlap threshold for post processing: 0.3
3. Neighbor threshold for post processing: 5
4. Number of threads for strong classification: 128
5. Number of blocks for strong classification based on number of weak classifiers
4.2 Measuring Performance

Since our project involved optimizing the current sequential implementation of the Viola
Jones algorithm, we wanted our performance metrics to encapsulate speedup and compu-
tation time. We measured speedup comparing the performance of the our parallel CUDA
implementation to a the C++ sequential algorithm as a baseline. In the context of our
project, computation time would be an important metric, especially considering real-life
applications concerning live video feeds and large dataset processing.

Speedup over Number of Faces

—— Both Methods Parallelized
—== Cascade Classification Only
——- Detect Only

20.0F

Speedup Factor
= —
o N
=} wn

P
n
T

e
=)
T

N
w
T

0.0 50 100 150 200 250 300 350 400
Number of Faces Detected

We can see from the graph that both methods combined achieve the highest speedup,
starting at nearly 20x when very few faces are detected and stabilizing around 15x as
the number of faces increases. The initial high speedup suggests that parallelizing both
components is significantly more effective when the number of detected faces is low. This
could be due to less computational overhead and fewer data dependencies early in the process
when fewer faces are involved.

As the number of faces increases, the speedup factor decreases, particularly noticeable in the
purple line. This decline could be due to increased computational complexity and overhead
from managing more data (i.e., more detected faces requiring more classification checks and
possibly more integral image calculations across different sub-windows).

For the cascade classification only, the declining trend implies that as the workload increases
with more faces, the potential for parallelizing this task alone offers diminishing returns,
possibly due to increased synchronization or communication overhead among threads. This
makes sense in terms of the algorithm as the number of faces increase since this increases
the computational load for evaluating the classifiers.

Our analysis suggests that while parallelization significantly improves performance, the max-
imum benefit is derived when both integral image computation and strong classification are
parallelized together. This strategy effectively balances the computational load across the
GPU’s resources, leading to better overall performance.



Final Project: Facial Detection in CUDA rmanathk, gsawhney

Processing Time over Number of Faces

 —— Sequential
—— CUDA

= N N w w
w o (&) o w

=
o

Processing Time (seconds)

0 50 100 150 200 250 300 350 400
Number of Faces Detected

The graph above shows the processing time required for facial detection using both the
sequential (C++ CPU-based) and a CUDA (GPU-based) approach as the number of faces
detected increases. The blue line representing the sequential version shows a gradual increase
in processing time as the number of faces detected increases. Starting from around 24
seconds, it rises to approximately 35 seconds as the number of faces approaches 400. The
CUDA implementation’s processing time remains nearly constant and significantly lower,
hovering around just above 3 seconds, regardless of the number of faces detected.

The nearly flat green line indicates that the CUDA-based facial detection maintains consis-
tent even as the number of faces increases. The blue line’s upward trend demonstrates that
the processing time for the sequential method increases linearly with the number of faces.
This behavior makes sense for CPU-based processing where each additional face incremen-
tally adds to the computation load, impacting the overall performance. The stark contrast
between the two lines illustrates the effectiveness of using CUDA for parallel processing in
this context. The CUDA implementation not only drastically reduces the processing time
but also shows stability against increasing workloads.

4.3 Limitations

Although the speedup is significant, especially when both the detect function and cascade
classification are parallelized, there is a noted decline in speedup as the number of faces
increases, which later stabilizes. Diminishing returns can occur as input size increases (more
faces are present), which can be attributed to the overhead costs that negates the benefits
of additional parallelism.

In terms of bottlenecks, data transfer between the host and the GPU often becomes a bottle-
neck, particularly when large images or multiple images are processed in batch operations.
The time taken to transfer the image data from the host memory to the GPU memory can
significantly impact overall performance, particularly if the integral images or classification
data are large.

GPU performance using CUDA can degrade due to thread divergence within warps, where
different threads of a single warp follow different execution paths. This situation can occur
when different parts of the image require significantly different amounts of computation,
causing some threads to idle while others are working, leading to inefficient use of the GPU
cores.

4.4 Deeper Analysis
We can likely split execution time for our CUDA implentation in the following way:

(i) Data Transfer Time (10%) : Time spent transferring data between host (CPU) memory
and device (GPU) memory. Note this is an estimation based on how our implementation
scaled over input sizes.

(ii) Kernel Execution Time (85%) : Time consumed by the actual computation kernels
running on the GPU including:

— Integral Image Calculation (15%): Time taken to compute integral images necessary
for feature calculation.

— Feature Calculation (35%): Time used to compute features from the integral image.
This is highly dependent on the number of candidate features in the image and may



Final Project: Facial Detection in CUDA rmanathk, gsawhney

vary from this estimation.

— Classification (35%): Time spent on executing the cascade classifier which uses the
computed features to detect faces. This is highly dependent on the number of candi-
date features in the image and may vary from this estimation.

(iii) Synchronization and Overhead (5%): Time spent on synchronizing between different
threads and other overheads including kernel launch overhead. Note this is an estimation
based on how our implementation scaled over input sizes.

We know that the kernel execution time is highly dependent on feature calculation and
classification because our speedup decreases when the number of faces increases, which only
impacts the level of feature and classification computation required.

Because of the combination of both host and device functions, one area of improvement
could have been reducing the data transfer time, especially for high-resolution images or
real-time applications. Techniques like using asynchronous memory transfers can help.

Additionally, our hope to achieve goal was to improve cache efficiency and reducing cache
misses despite the distributed work amongst processors. Unfortunately, we were not able
to investigate and implement cache optimizations due to the time it took to implement our
parallelization techniques.

4.5 Machine Choice

The choice of a GPU for our project proved sound since tasks like integral image computation
and feature calculation can be parallelized in terms of CUDA blocks, making them well-
suited for the GPU’s architecture. The Viola-Jones algorithm, especially when implementing
a cascade classifier, is computationally intensive and benefits from the parallel processing
power of GPUs.

While CPUs are capable of running the algorithm, the sequential nature of CPU processing
would result in much higher processing times for large images or real-time requirements (as
shown in the graphs above). The parallelism offered by modern multi-core CPUs is still
limited compared to GPUs, especially for large-scale image data.

5 References

Github: https://github.com/noahlevenson/wasmface
(see Section 3.3 for more information on how we used this resource)

Research Paper: https://www.cs.cmu.edu/ efros/courses/LBMVO07/Papers/viola-cvpr-
01.pdf

6 Work by Student

Ria Manathkar (50%), Gaurika Sawhney (50%)

We worked collaboratively on every aspect of the project, including write-ups, reports,
coding/debugging, etc.



Final Project: Facial Detection in CUDA

rmanathk, gsawhney

7 Appendix

7.1 Initial Goal Setting

Plan to Achieve

Goal Description Justification

1 Successfully implementing the As a foundational building block for our project, we
Viola-Jones algorithm in CUDA. need to ensure we have a working sequential

algorithm that we can use to measure the speedup of
following parallel versions we create.

2.1 Assigning window processing (of all | By determining all windows with various window
sizes) to CUDA blocks so these can | sizes at the beginning, we will be able to distribute
all be processed in parallel the work for each window better in terms of CUDA

blocks, making the algorithm more efficient

22 Parallelize the steps the cascade This may be challenging since the cascading
classifier takes for each integral classifier is inherently sequential due to layered
image dependencies. If we are able to parallelize this step

somehow, by breaking apart some functions or
finding a way around the dependencies, this could
help speed up immensely.

3 Improving the amount of memory As stated above, this face detection algorithm
accesses across the algorithm involves many accesses to the input and integral

image so overall latency could be greatly impacted
by the frequency of memory accesses.

4 Run experiments on both We want to determine our performance limitations
implementations with different and the tradeoffs between our two potential methods
problem sizes and input images of parallelization.

Hope to Achieve

Goal Description Justification

5 Improving cache efficiency and Because each processor will be processing
reducing cache misses despite the windows across different parts of the image, cache
distributed work amongst processors | coherency will be a big challenge. We hope to make

some optimizations for this, by better distributing
WOrk across processors.




