
PARALLEL FACE 
DETECTION IN CUDA

Ria Manathkar & Gaurika Sawhney 



THE VIOLA JONES ALGORITHM

1. Uses Haar-like features to 

identify different parts of 

the face

2. Calculates the ”integral 

image” from the input 

image

3. The cascade classifier is 

designed to quickly reject 

non-face regions in the 

image.

4. After passing through all 

stages of the cascade, the 

remaining regions are 

considered potential faces 

and are passed through a 

threshold.



PARALLELIZATION APPROACH



CASCADE CLASSIFICATION

1. Cascade itself executes sequentially since each stage must be passed before proceeding to the next.
2. Parallelized the evaluation within each stage.
3. Kernel evaluates a set of weak classifiers against a sub-region of an image to determine if the region 

meets certain criteria defined by the classifiers.

- Inherently a sequential process
- Structured as a series of stages 

where each stage contains one or 
multiple weak classifiers

- If the stage classifies the region as 
positive, the region is passed on to 
the next stage in the cascade



DETECT FUNCTION

- Uses the cascade classifier to detect 
objects within the image.

- Sequential algorithm implemented a 
sliding window approach. 

- Involves moving a window of a fixed 
size across the image and analyzing 
the content within that window at 
each position to determine if it 
contains a facial feature.

1. CUDA kernel is designed to process multiple windows simultaneously.
2. Each thread in the GPU can handle the classification of a different window beginning at its 

corresponding pixel.
3. For each rectangle, the kernel computes the sum of pixel values within the window based on the 

integral image and repeats over multiple rectangle sizes.



SPEEDUP RESULTS

- Both methods combined 

achieve highest speedup

- Initially high speedup → 

parallelizing both 

components is 

significantly more 

effective when number of 

detected faces is low

- Combined parallel 

implementation exploits 

partitioning of methods



COMPUTATION TIME RESULTS

- The CUDA 

implementation not only 

drastically reduces the 

processing time

- Also shows stability 

against increasing 

workloads

- Both processing times 

increase with more faces

- With larger input sizes, 

increased computational 

complexity and overhead 

from managing more data



TAKEAWAYS

- Learned how to navigate dependencies

- Cascade classifier + Integral image

- Detect function synchronization

- Realized how to break down a very interconnected 

algorithm 

- Had to identify what parts were the most 

computationally expensive

- Allowed us to find specific parts that benefited 

from parallelism and avoid unnecessary 

overhead

- Experimented with different tradeoffs

- Navigating dependencies and modularity

- Further exploration 

- Cache coherency

- Reusing previous frames in live-video


